多路光纤激光相干偏振合成技术研究

马鹏飞 周 朴 马阎星 粟荣涛 刘泽金

(国防科学技术大学光电科学与工程学院,湖南长沙 410073)

摘要 进行了多路光纤激光相干偏振合成理论和实验研究。基于主动锁相技术实现了4路光纤激光的相位锁定 和相干偏振合成输出,合成效率达84.9%,验证了偏振合成向多路多模块发展的可行性,并提出了拓展方案。 关键词 激光器;光纤激光;相干合成;偏振合成;相位锁定

中图分类号 TN248.1; O436.3 文献标识码 A doi: 10.3788/CJL201239.0402009

Study of Coherent Polarization Beam Combining Technique of Multi-Channel Fiber Lasers

Ma Pengfei Zhou Pu Ma Yanxing Su Rongtao Liu Zejin

(College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China)

Abstract Coherent polarization beam combining (CPBC) of multi-channel fiber lasers is studied theoretically and experimentally. Based on active phase-locking technology, phase of four fiber lasers are locked and coherently combined beam with combining efficiency of 84.9% is obtained, which indicates that coherent polarization beam combining is feasible for multi-channel, multi-module structure and feasible project are proposed.

Key words lasers; fiber laser; coherent combining; polarization combining; phase-locking

OCIS codes 140.3290; 140.3298; 060.3510

1 引 言

对于光纤激光器而言,单根光纤的最大输出功 率受限于非线性效应、热效应等因素^[1,2],而将多个 光纤激光器进行光束合成,可同时解决热和非线性 效应等问题,故而成为光纤激光器的研究热点。目 前,相干合成和非相干合成是主要的技术途径。相 干合成具有高功率、高光束质量、高转换效率等优 点,故而成为当今光纤激光器领域的最前沿课 题^[3~6]。

目前国内外光纤激光相干合成技术主要包括: 主振荡功率放大器(MOPA)结构光纤激光阵列锁 相^[7]、多芯光纤倏逝波耦合锁相^[8]、Talbot 自成像 的多芯光纤锁相^[9]、自傅里叶腔的光纤阵列锁 相^[10]、光纤激光阵列的相干性自组织^[11]等。基于 MOPA 结构的光纤阵列锁相由于占空比的原因使 得部分能量分散到旁瓣,合成效率不高^[12];多芯光 纤倏逝波耦合锁相对光纤的设计要求高^[8];Talbot 自成像的多芯光纤锁相由于本身的局限性合成效率 不高^[13];自傅里叶腔的光纤阵列锁相对激光腔的设 计要求高,而且采用全空间结构,结构不紧凑^[14];光 纤激光阵列的相干性自组织结构复杂,对光纤的拉 制工艺技术要求高^[11]。

国内外大部分合成方案都将光场视为标量场, 考虑光场矢量性的相干偏振合成具有合成效率高 (理论上可到100%)、适应于大尺寸光束、良好的稳 定性与可扩展性等独特优点,但目前却较少受到关 注。有些研究者甚至认为偏振合成有其内在的局限 性,不适合向大功率和多路多模块发展^[3]。在已经 开展的偏振合成技术的研究中,武汉军械士官学校 光电技术研究所进行了两路固体激光器(Nd:

收稿日期: 2011-10-24; 收到修改稿日期: 2012-01-02

作者简介:马鹏飞(1987—),男,硕士研究生,主要从事光纤激光器及光束合成等方面的研究。

E-mail: shandapengfei@126.com

导师简介:刘泽金(1963—),男,教授,博士生导师,主要从事高能激光技术方面的研究。E-mail: zejinliu@vip. sina. com

YAG)被动锁相相干偏振合成^[15],中国科学院上海 光学精密机械研究所进行了基于全空间结构的偏振 合成理论和实验研究^[16],华北光电技术研究所进行 了两路固体激光器偏振合成实验研究^[17]。传统的 偏振合成限于两路的根本原因在于未对参与合成的 光束进行相位控制,使得合成后的光束是随机偏振 态,无法进一步参与合成。本文基于相干偏振合成, 对各束激光的相位进行主动控制^[18,19],突破了光纤 激光偏振合成仅限于两路的局限性,可以拓展到多 路光束的相干偏振合成。

2 实验原理与方案

为了说明相干偏振合成的物理机理,首先研究 线偏振光通过半波片后偏振态的变化情况,不失一 般性,以基模高斯光束为例。

在缓变振幅近似下,基模高斯光束的表达式可 以表示为

$$E(x,y,z) = A \frac{w_0}{w(z)} \exp\left\{-i\left[kz + \frac{k(x^2+y^2)}{2R(z)} - \psi\right]\right\} \exp\left(-\frac{x^2+y^2}{w_0^2}\right), (1)$$

式中 w_0 为高斯光東東腰半径, $w(z) = w_0$ $\sqrt{1 + \left(\frac{\lambda z}{\pi w_0^2}\right)^2}$ 为z处高斯光束的光斑半径,R(z) = $z + \frac{(\pi w_0^2)^2}{\lambda^2 z}$ 为z处高斯光束的曲率半径, $k = \frac{2\pi}{\lambda}$ 为 波数, $\phi = \arctan\left(\frac{\lambda z}{\pi w_0^2}\right)$ 为附加相移。

则经过半波片之前光场的 Jones 矩阵为

$$E(x, y, z) = \begin{bmatrix} E_x(x, y, z) \\ E_y(x, y, z) \end{bmatrix} = A \frac{w_0}{w(z)} \times \exp\left\{-i\left[kz + \frac{k(x^2 + y^2)}{2R(z)} - \psi\right]\right\} \times \exp\left(-\frac{x^2 + y^2}{w_0^2}\right) \begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}, \quad (2)$$

设半波片的快轴沿 x 轴,则半波片的 Jones 矩阵为 $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$,所以计算得到经过半波片后的 Jones 矩 阵为

$$\boldsymbol{E}(x,y,z) = \begin{bmatrix} E_x(x,y,z) \\ E_y(x,y,z) \end{bmatrix} = A \frac{w_0}{w(z)} \times \exp\left\{-i\left[kz + \frac{k(x^2 + y^2)}{2R(z)} - \psi\right]\right\} \times \exp\left(-\frac{x^2 + y^2}{w_0^2}\right) \begin{bmatrix}\cos\theta \\ -\sin\theta\end{bmatrix}, \quad (3)$$

式中 θ 为偏振光的偏振方向与 x 轴的夹角,即偏振 方位角。所以,线偏振光经过半波片后仍为线偏振 光,偏振方向旋转 2θ 的角度,于是通过旋转半波片 可以得到实验想要的偏振态。

两束正交偏振光的 Jones 矩阵通过合理的建立 坐标系和简化,可以表示为 $[E_x \exp(-j\delta_x) \quad 0]^T$, $\begin{bmatrix} 0 & E_y \exp(-j\delta_y) \end{bmatrix}^T$,则合成后的 Jones 矩阵可以 表示为

$$\mathbf{J} = \mathbf{J}_{x} + \mathbf{J}_{y} = \begin{bmatrix} E_{x} \exp(-j\delta_{x}) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ E_{y} \exp(-j\delta_{y}) \end{bmatrix} = \begin{bmatrix} E_{x} \exp(-j\delta_{x}) \\ E_{y} \exp(-j\delta_{y}) \end{bmatrix}, \quad (4)$$

通过重新选定初始相位,并进行归一化处理,得到

$$J = \frac{1}{\sqrt{E_x^2 + E_y^2}} \begin{bmatrix} E_x \\ E_y \exp(-j\delta) \end{bmatrix} = \begin{bmatrix} \cos \beta \\ \exp(-j\delta) \sin \beta \end{bmatrix},$$
 (5)

式中
$$\frac{E_y}{E_x}$$
 = tan β , $\delta = \delta_y - \delta_x$ 。

一般情况下,合成后的光束为随机椭圆偏振光, 椭圆偏振光可以用 tan β 与椭圆度(是关于 δ 的函 数)来表示。如果能将参与合成的两路正交偏振光 束的相位差 δ 锁定为 $n\pi(n$ 为整数),则合成后的光 束为线偏振光,合成后的线偏振光通过半波片调节 偏振态,又可以和另一束偏振方向垂直的线偏振光 进行合成,从而实现多路光束的相干偏振合成,相应 的理论合成效率近 100%,所以相位锁定是实现相 干偏振合成的关键。

根据上述原理,开展了4路光纤激光相干偏振 合成研究,整个系统如图1所示。种子源出来的激 光,经过分束器分为4束,再经过相位调制器(PM)、 放大器(AMP)、隔离器(ISO)和准直器后进行相干 偏振合成。通过反馈和控制模块的作用,对各路光 束的相位进行锁定,这是多路激光进行相干偏振合 成的核心。C1,C2,C3,C4为4个准直器,将各路激 光准直发射,准直后的光束直径为5 mm。用半波 片(HWP)对入射线偏振光的偏振态进行旋转,使入 射到每个偏振合束器(PBC)上的两路线偏振光的偏 振方向互相垂直,从而实现偏振合成。具体过程为: 通过旋转 HWP,使入射到 PBC1 上的两束光的偏振 态相互正交,从而经过 PBC1 后合为一束。用同样 的方法,使入射到 PBC2 的两束光的偏振态相互正 交,合成为一束。从 PBC1 出射的光经过 45°全反镜 (M1) 入射到 PBC3 上, 与 PBC2 出射的光束在 PBC3上进行合成。在系统闭环时,参与合成的4 路光束的相位差均为0,所以经过PBC1和PBC2合成后的两路光束为线偏振光,通过HWP的调节,使 得入射到PBC3的两路光束的偏振态互相垂直,从 而实现4路光束的偏振合成。M2为1:99的部分 反射镜,将一小部分光经全反镜M3返回到光电探 测器实现闭环控制,其余光用CCD探测其远场光场 分布。光电探测器输出的电信号一部分通过锁相放 大器解调出相位误差信号加到相位调制器上,另一 部分接到示波器上观察时域合成效果。CM为控制 模块,包含锁相放大器、信号发生器和计算机等。种 子源激光器的工作波长为 1064 nm,相位调制器工 作波长在 1040~1080 nm 之间,调制带宽大于 500 MHz。光电探测器选用美国 Thorlabs 公司生 产的 PDA36A-EC 型硅光电探测器,其光谱响应范 围为 400~1100 nm,响应带宽在 10 dB 增益时为 1.25 MHz。实验中使用自主设计的单抖动控制模 块,算法在闭环时找到输出光强的最优解,此时理论 上各链路之间的相位差被锁定为 $n\pi(n$ 为整数),其 相位校正残差可以限制在 $\lambda/20^{[20]}$ 。考虑到是对方 案进行概念验证,所以各链路中没有加入放大器和 隔离器。

图 1 相干偏振合成实验方案图 Fig. 1 Experimental setup for coherent polarization beam combination

3 实验结果与讨论

定义合成效率 $\eta = P_{out}/P_{in}$, P_{out} 是合成后光场的 总功率, P_{in} 为准直后 4 路激光束的总功率。实验中 参与合成的4路光束通过准直器后的功率分别为 1.25,1.48,0.99,1.17 mW,功率比为1.31:1.55: 1.00:1.22,在M2的透射端测量合成后的功率,合成

图 2 系统开环(a)、闭环(b)的光斑分布

Fig. 2 Intensity pattern of combined beam when the system is in (a) open-loop and (b) close-loop

后的输出功率为 4.15 mW,合成效率达84.9%。由 于同轴性误差、相位残差、振幅比等因素的影响,合 成效率没有达到 100%。值得注意的是,通过使用 高精度的调整架和进一步的优化相位控制电路及算 法,可以进一步提高相干偏振合成的合成效率。

在实验中,当系统处于开环时,合成后光场的光 强分布由于参与合成的每一路激光束相位起伏的变 化而不断地移动,能量集中度不高,合成后的光斑分 布随机起伏,图 2(a)是选取 4 个不同时刻开环的光 斑分布。当整个系统实行闭环控制后,远场的光强 分布稳定,合成后的光束在远场和近场为一束,系统 闭环时的光斑分布如图 2(b)所示。 基于本实验方案,系统对相位噪声的补偿过程 如图 3 所示,图 3(a)、(b)分别表示系统由开环到闭 环和由闭环到开环时光电探测器小孔内光强的时域 图像。当系统处于开环时,波形抖动幅度很大,说明 相位的随即起伏对光强的分布产生很大的影响,当 系统进行闭环时,光电探测器的输出基本保持稳定, 说明 4 路光路之间的相位噪声得到了有效补偿,合 成后的光束相干度明显提高。另外需要说明的是, 由于受外界振动、光电探测器本底噪声、锁相电路的 相位残差等因素的影响,当系统处于闭环时,仍然会 出现一些幅度较低的尖峰突变。

图 3 系统开环到闭环(a),闭环到开环(b)时探测器光强的时域变化 Fig. 3 Time series of laser intensity when the system evolves from (a) open-loop to close-loop and (b) close-loop to open-loop

4 拓展方案

基于 MOPA 结构的相干偏振合成方案可以扩展到 N 路,这里提出实现多路偏振合成的实验方案 原理图,如图 4 所示。 由图 4 可知,相干偏振合成原理与 4 路合成原 理类似,种子源被分为 N 路,每一路加放大器(A1 到 AN)和 ISO,加入放大器后可以对每一路光束进 行放大,实现高功率、高光束质量的激光输出。

图 4 N 路 MOPA 结构偏振合成原理图

Fig. 4 System configuration of coherent polarization beam combination of N channels MOPA laser

5 结 论

实现了多路基于 MOPA 结构的主动相位控制 光纤激光相干偏振合成。系统闭环时合成效率达 84.9%,合成后的光束质量好、稳定性高、能量集中 度高。最后讨论了此方案向多路拓展的可行性,提 出了拓展方案。分析表明,基于 MOPA 结构的主动 锁相相干偏振合成方案具备同时获得高功率和高光 束质量激光的可能性,并且易于拓展。

参考文献

- Dajani, C. Zeringue, T. Shay. Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers[J]. *IEEE J. Sel. Top. Quantum Electron.*, 2009, 15(2): 406~414
- 2 G. D. Goodno, H. Komine, S. J. McNaught *et al.*. Coherent combination of high-power, zigzag slab lasers[J]. *Opt. Lett.*, 2006, **31**(9): 1247~1249
- 3 G. D. Goodno, C. P. Asman, J. Anderegg et al.. Brightnessscaling potential of actively phase-locked solidstate laser arrays [J]. IEEE J. Sel. Top. Quantum Electron., 2007, 13(3): 460~472
- 4 T. M. Shay, V. Benham, J. T. Baker *et al.*. First experimental demonstration of self-synchronous phase locking of an optical array[J]. *Opt. Express*, 2006, **14**(25): 12022~12027
- 5 P. Zhou, Z. Liu, X. Wang *et al.*. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application[J]. *IEEE J. Sel. Top. Quantum Electron.*, 2009, **15**(2): 248~256
- 6 S. J. Augst, J. Ranka, T. Y. Fan *et al.*, Beam combining of ytterbium fiber amplifiers [J]. *J. Opt. Soc. Am. B*, 2007, 24(8): 1707~1715
- 7 C. J. Corcoran, S. Brosnan, E. Cheung *et al.*, Coherently coupled high power fiber arrays[C]. SPIE, 2006, 6102: 61020U
- 8 Y. Huo, P. K. Cheo. Analysis of transverse mode competition and selection in multicore fiber lasers[J]. J. Opt. Soc. Am. B, 2005, 22(11): 2345~2349
- 9 M. Wrage, P. Glas, M. Leitner. Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors[J]. *Opt. Lett.*, 2001, 26(13): 980~982

- 10 C. J. Corcoran, F. Durville. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity [J]. Appl. Phys. Lett., 2005, 86(20): 201118
- 11 H. Bruesselbach, D. C. Jones, Metin S. Mangir *et al.*. Selforganized coherence in fiber laser arrays[J]. Opt. Lett., 2005, 30(11): 1339~1341
- 12 Zhou Pu, Wang Xiaoling, Ma Yanxing *et al.*. Aperture filling——an important technique in coherent beam combining of fiber laser array[J]. *Laser & Optoelectronics Progress*, 2010, 47(2): 021401
 周 朴,王小林,马阎星等.孔径填充——光纤激光列阵相干合成中的关键技术[J].激光与光电子学进展, 2010, 47(2): 021401
- 13 Yan Aimin, Liu Liren, Liu De'an et al.. Recent progress in phase-locking and aperture filling of fiber laser arrays[J]. Laser & Optoelectronics Progress, 2008, 45(8): 33~39
 闫爱民,刘立人,刘德安等.光纤激光阵列锁相和孔径装填技术研究进展[J]. 激光与光电子学进展, 2008, 45(8): 33~39
- 14 E. J. Bochove, C. J. Corcoran. In-phase supermode selection in a multicore fiber laser array by means of a self-Fourier external cavity[J]. Appl. Opt., 2007, 46(22): 5009~5018
- 15 Lu Changyong, Liu Xu, Liu Yang *et al.*. Coherent combining of two beams based on polarization phase locking [J]. *Chinese J. Lasers*, 2009, **36**(6): 1437~1441
 卢常勇,刘 旭,刘 洋等.基于偏振锁相的双光束相干合成 [J]. 中国激光, 2009, **36**(6): 1437~1441
- 16 Hongcheng Dong, Xiao Li, Chaoyang Wei et al.. Coaxial combination of coherent laser beams[J]. Chin. Opt. Lett., 2009, 7(11): 1012~1014
- 17 Yan Lianshan, Zhang Shiwen. Study about polarized combination of two beams[J]. *Laser & Infrared*, 1999, **29**(4): 199~201 闫连山,张世文.双光束偏振合成实验研究与探讨[J]. 激光与 红外, 1999, **29**(4): 199~201
- 18 R. Uberna, A. Bratcher, B. G. Tiemann. Coherent polarization beam combination [J]. IEEE J. Quantum Electron., 2010, 46(8): 1191~1196
- 19 R. Uberna, A. Bratcher, B. G. Tiemann. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Appl. Opt., 2010, 49(35): 6762~6765
- 20 Y. Ma, P. Zhou, X. Wang *et al.*. Coherent beam combination with single frequency dithering technique[J]. *Opt. Lett.*, 2010, 50(9): 1308~1310

栏目编辑: 宋梅梅